#### Conformal Type Problem via Discrete Analysis

Eric Wang

Under the Direction of Dr. Sergiy Merenkov The City College of New York

MIT PRIMES October Conference

October 12, 2024

## **Riemann Surfaces**



Figure 1: Pictures of Riemann Surfaces

Cylinder amplitudes in 2D Quantum Gravity (Mathijs Wintraecken)

#### Uniformization Theorem (Poincaré)

Every simply connected Riemann surface is conformally equivalent to one of the following:

- the complex plane (Parabolic)
- the open unit disk (Hyperbolic)
- the Riemann sphere (Elliptic)

#### Uniformization Theorem (Poincaré)

Every simply connected Riemann surface is conformally equivalent to one of the following:

- the complex plane (Parabolic)
- the open unit disk (Hyperbolic)
- the Riemann sphere (Elliptic)

#### Conformal Type Problem

The conformal type problem involves classifying Riemann surfaces as parabolic, hyperbolic, or elliptic.













































• a







a

2

1







FIGURE 2

RANDOM WALK ON THE SPEISER GRAPH OF A RIEMANN SURFACE (Doyle, 1984)



• Vertices alternate between *a* and *b*.

FIGURE 2

RANDOM WALK ON THE SPEISER GRAPH OF A RIEMANN SURFACE (Doyle, 1984)



- Vertices alternate between *a* and *b*.
- Each vertex has the same number of edges

FIGURE 2

RANDOM WALK ON THE SPEISER GRAPH OF A RIEMANN SURFACE (Doyle, 1984)



FIGURE 2

- Vertices alternate between a and b.
- Each vertex has the same number of edges
- Each edge around the same vertex has a different label

RANDOM WALK ON THE SPEISER GRAPH OF A RIEMANN SURFACE (Doyle, 1984)











































#### Theorem (Doyle, 1984)

The conformal type (parabolic or hyperbolic) of a covering surface of a Riemann sphere with n punctures is consistent with the type (recurrent or transient respectively) of the random walk on its corresponding extended Speiser graph.

#### Definition

A **random walk** on a graph is defined as follows: starting from a vertex  $V_0$  of the graph called the origin, at each vertex we visit, we randomly travel along one of its edges, each with equal probability. The walk stops if we return to  $V_0$ .

#### Definition

A **random walk** on a graph is defined as follows: starting from a vertex  $V_0$  of the graph called the origin, at each vertex we visit, we randomly travel along one of its edges, each with equal probability. The walk stops if we return to  $V_0$ .

#### Definition

A random walk on a graph is called **recurrent** if it returns to the origin with probability 1.

#### Definition

A **random walk** on a graph is defined as follows: starting from a vertex  $V_0$  of the graph called the origin, at each vertex we visit, we randomly travel along one of its edges, each with equal probability. The walk stops if we return to  $V_0$ .

#### Definition

A random walk on a graph is called **recurrent** if it returns to the origin with probability 1.

#### Definition

A random walk on a graph is called **transient** if it returns to the origin with probability less than 1.

## Example of Recurrent Graph

A random walk in 1D is recurrent.



## Example of Transient Graph

A random walk on a tree is transient.



FIGURE 2

RANDOM WALK ON THE SPEISER GRAPH OF A RIEMANN SURFACE (Doyle, 1984)

Eric Wang

#### Theorem (Wang, 2024)

The covering surface of a 4-puncture Riemann sphere corresponding to the Speiser graph depicted on the right has a recurrent extended Speiser graph. Thus, the covering surface is parabolic.



- Dr. Sergiy Merenkov
- MIT PRIMES
- Dr. Tanya Khovanova, Dr. Slava Gerovitch, Prof. Pavel Etingof
- Friends & family



# Bibliography

- Peter G. Doyle. Random walk on the Speiser graph of a Riemann surface. Bulletin (New Series) of the American Mathematical Society, 11(2):371–377, 1984.
- [2] Peter G. Doyle and J. Laurie Snell. Random walks and electric networks, 2000.
- [3] Lukas Geyer and Sergei Merenkov. A hyperbolic surface with a square grid net, 2005.
- [4] Sergei Merenkov. Determining biholomorphic type of a manifold using combinatorial and algebraic structures, 2013.
- [5] P.M. Soardi. *Potential Theory on Infinite Networks*. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1994.
- [6] L. I. Volkovyskii. paper investigation of the type problem for a simply connected riemann surface. *Trudy Mat. Inst. Steklov.*, 34:3–171, 1950.